
CHAPTER 3

STATEMENTS

Statements represent the lowest-level building blocks of a program. Each statement represents a computational step which has a certain side-effect. (A side-effect can be thought of as a change in the program state, such as the value of a variable changing because of an assignment.) Statements are useful because of the side-effects they cause, the combination of which enables the program to serve a specific purpose (e.g., sort a list of names).

 A statement causes an action to be performed. In C++, a statement controls the sequence of execution, evaluates an expression, or does nothing (the null statement). The basic structure of any program can be represented like this:

Begin

 Statement

 Statement

 Statement

End
A running program spends all of its time executing statements. The order in which statements are executed is called flow control (or control flow). This term reflect the fact that the currently executing statement has the control of the CPU, which when completed will be handed over (flow) to another statement.
 C++ insists that all statements end with a semicolon. The reason is that C++ is tolerant of different layouts. If you chose to put several statements on one line, then the semicolons would be the only way in which C++ would be able to separate them.

Like many procedural languages, C++ provides different forms of statements:

Simple Statement

Compound Statement

 Statement

Selection Statement

Iterative/Loop Statement

Jump Statement

1. Simple statement
A simple statement is a computation terminated by a semicolon. Variable definitions and semicolon- terminated expressions are representatives pf this category.

int i;
//declaration statement

x++;
// this has a side-effect

m+3;
//useless statement b/c it has no side-effect; result is just discarded

The simplest statement is the null statement which consists of just a semicolon:

; // null statement

2. Compound statement
Compound statement is a unit of code consisting of zero or more statements; hence the name compound. This consists of an opening brace, an optional declaration and definition section, and an optional statement section, followed by a closing brace.

For example:

 {
int min, i = 10, j = 20;

min = (i < j ? i : j);

cout << min << '\n';

 }
Compound statements are useful in two ways:

(i) They allow us to put multiple statements in places where otherwise only single statements are allowed, and

(ii) They allow us to introduce a new scope (part of the program text within which a variable remains defined in the program) in the program. For example, the scope of min, i, and j in the above example is from where they are defined till the closing brace of the compound statement. Outside the compound statement, these variables are not defined.
Notes: (Because a compound statement may contain variable definitions and defines a scope for them, it is also called a block.

 (A block does not need a semi colon.

3. Selection Statement
Selection statements are used for specifying alternate paths of execution, depending on the outcome of a logical condition. It is sometimes desirable to make the execution of a statement dependent upon a condition being satisfied. C++ provides such facilities. The if statement enables you to test for a condition (such as whether two variables are equal) and branch to different parts of your code, depending on the result. The modern languages provide two selection constructs: two-way and multiple-way selections.
3.1 Two-way selection

It is sometimes desirable to make the execution of a statement dependent upon a

condition being satisfied. The if statement provides a way of expressing this, the

general form of which is:

if (expression)

statement;

First expression is evaluated. If the outcome is nonzero then statement is executed. Otherwise, nothing happens. For example, when dividing two values, we may want to check that the denominator is nonzero:

if (count != 0)

average = sum / count;
To make multiple statements dependent on the same condition, we can use a

compound statement:

if (balance > 0)

{

interest = balance * creditRate;

balance += interest;

}

· A variant form of the if statement allows us to specify two alternative statements: one which is executed if a condition is satisfied and one which is executed if the condition is not satisfied. This is called the if-else statement and has the general form:
if (expression)

statement1;

else

statement2;

· First expression is evaluated. If the outcome is nonzero then statement1 is executed. Otherwise, statement2 is executed.
For example:

if (balance > 0)

 {interest = balance * creditRate;

balance += interest;

 }

else

 {interest = balance * debitRate;

balance += interest;

 }
E.g. 1

#include <iostream.h>

void main ()

{

int x;

 cout << "Please guse a number I have inmind from 1-10:";

 cin >> x;

 if (x > 10)

 cout << "That number is too big!" << endl;

 if (x < 1)

 cout << "That number is too small!" << endl;

 if (x != 5)

 cout << "You didn't get the right number!" << endl;

 if (x==5)

 cout << "You didn't get the right number!" << endl;
 cout << "Thank you and goodbye!" << endl;

 }
E.g. 2
#include<iostream.h>

Void main()

{

 cout << "Please type the number 8 : ";

 cin >> x;

if (x == 8)

 cout << "Thank you! I appreciate that." << endl;

else

 {

 cout << "Why can't you follow simple instructions?<< endl;

 }
 }

Note: If statements may be nested by having an if statement appear inside another if statement. For example:

 if (callHour > 6)

 {

if (callDuration <= 5)

 charge = callDuration * tarrif1;

else

 charge = 5 * tarrif1+(callDuration - 5)*tarrif2;

}

 else

 charge = flatFee;
· A frequently-used form of nested if statements involves the else part consisting of another if-else statement like:

 Void main()

 {

Char ch;

Cout<<"Enter a character"<<endl;

Cin>>ch;

 if (ch >= 0 && ch <= 9)

 cout<<"the character "<<ch<<"is a number";
 else

{

if (ch >= 'A' && ch <= 'Z')

 cout<<"the character "<<ch<<"capital letter";
else

 {

if (ch >= 'a' && ch <= 'z')

 cout<<"the character "<<ch<<"Small letter letter";
else

 cout<<"the character "<<ch<<"It is a special character";
 }

 }

 }

For improved readability, it is conventional to format such cases as follows:

if (ch >= '0' && ch <= '9')

cout<<"the character "<<ch<<"is a number";
else if (cha >= 'A' && ch <= 'Z')

cout<<"the character "<<ch<<"capital letter";
else if (ch >= 'a' && ch <= 'z')

 cout<<"the character "<<ch<<"Small letter letter";
else

 cout<<"the character "<<ch<<"It is a special character";
3.2 Multiple-way Selection

The switch statement provides a way of choosing between a set of alternatives, based on the value of an expression. The general form of the switch statement is:

switch (expression)

{

case constant 1:

statements;

.....

case constant n:

statements;

default:

statements;

}

· First expression (called the switch tag) is evaluated, and the outcome is compared to each of the numeric constants (called case labels), in the order they appear, until a match is found. The statements following the matching case are then executed. Note the plural: each case may be followed by zero or more statements (not just one statement). Execution continues until either a break statement is encountered or all intervening statements until the end of the switch statement are executed. The final default case is optional and is exercised if none of the earlier cases provide a match.
E.g.1
 The following example prompts user to enter an operator and 2 operands and generate the expression result with the selected operator on the operands.

 void main()

 {

int operand1, operand2;

 char operator;

cout <<"enter two numbers"<<endl;

cin >> operand1>>operand2;

cout <<"enter one of the these operators ‘+’ , ’*’ , ‘/’ , ‘%’ "<<endl;

cin>> operator;

 switch (operator)

 {

case '+':

cout<<operand1 + operand2;

break;

case '-':

cout<<operand1 - operand2;

break;

case '*':

cout<<operand1 * operand2;
break;

case '/':

cout<<operand1 / operand2;

break;

default:

cout << "unknown operator: " << operator << ‘\n';

break;

 }

 }

It should be obvious that any switch statement can also be written as multiple else-if statements. The above statement, for example, may be written as:

 void main()

 {

int operand1, operand2;

 char operator;

double result;

cout <<" Enter two Integers "<<endl;

cin >> operand1>>operand2;

cout <<"Enter one of the arithmetic operators ‘+’ , ’*’ , ‘/’ , ‘%’ "<<endl;

cin>> operator;

if (operator == '+')

cout<<operand1 + operand2;

else if (operator == '-')

cout<< operand1 - operand2;

else if (operator == 'x' || operator == '*')

cout<< operand1 * operand2;

else if (operator == '/')

cout<< operand1 / operand2;

else

cout << "unknown operator: " << operator << '\n';

 }

However, the switch version is arguably neater in this case. In general, preference should be given to the switch version when possible. The if-else approach should be reserved for situation where a switch cannot do the job (e.g., when the conditions involved are not simple equality expressions, or when the case labels are not numeric constants).
4. Iterative / Loops Statements
A loop is a way of repeating a series of instructions several times. The loop is set up either to repeat a certain number of times or to go round and round until some condition is met. Either way there should be some condition that makes the loop terminate.
The loop can be arranged in one of three ways:

· for statement
· while statement

· do…while statement

4.1 The for loop

This is the simplest and straight-forward looping construct that has the following generala look:

for(expression1;expression2;expression3)

· First expression1 is evaluated. Each time round the loop, expression2 is evaluated. If the outcome is nonzero then statement is executed and expression3 is evaluated. Otherwise, the loop is terminated.

· The most common use of for loops is for situations where a variable is incremented or decremented with each iteration of the loop.

//calculates the sum of numbers 1 through n

void main()

{
int sum = 0,n;
cout<<"Enter the maximum number"<<endl;

cin>>n;
for (int i = 1; i <= n; ++i)

sum += i;

 cout<<"the sum of numbers from 1 to <<n<<"is =:"<<sum;

 }

The control of the loop statement is depicted below:

NO
Yes

E.g. 1
#include<iostream.h>//displays the squares of the numbers [1,20]

 #include<iomanip.h>/
/ for setw(),

 void main ()

{

 int n;

 for (n=1; n<=20;n++)

 { cout<<setw(4) <<n;

 int sq = n*n;

 cout<<setw (6) << sq<<endl;

 } //end of loop

} // end of program.

E.g. 2

#include <iostream.h>

 void main ()

 {

 int x, limit, sum;

 cout << "Please enter a number bigger than 1 : ";

 cin >> limit;

 sum = 0;

 for (x = 1; x <= limit; x++)

 {

cout << "I am adding " << x << endl;

 sum = sum + x;

 }

 cout << endl;

 cout << "The sum of all the numbers from 1 to ";

 cout << limit << " is " << sum;

return;
 }

4.2 The while statement

The while statement (also called the while loop) provides a way of repeating a statement while a condition holds.

Syntax:

 while (expression)

 Statements;
· First expression (called the loop condition) is evaluated. If the outcome is nonzero then statement (called the loop body) is executed and the whole process is repeated. Otherwise, the loop is terminated.

//the while logic for summing numbers from 1 through n
void main()

{
int sum =0,i=1,n;
cout<<"Enter the maximum number"<<endl;

cin>>n;
while (i <= n)

sum += i++;

 cout<<"the sum of numbers from 1 to <<n<<"is =:"<<sum;

 }

E.g. 1

//a program to display numbers from 100 to 1

#include<iostream.h>

#include <iomanip.h>

 void main ()

{

int x = 100;

while (x>=1)

{

cout<< setw(4)<<x<<endl;
 x--;

}
//end of while loop

return;

}

//end of main prog
E.g 2
// An example of a while loop
#include <iostream.h>

void main ()

 { int number;
cout << "Please type a number bigger than 10 : ";

 cin >> number;

 while(number <= 10)

 {
cout << "No, bigger than 10! Try again: ";

 cin >> number;

 }

 }

4.3 The do...while statement
The do statement (also called do loop) is similar to the while statement, except that its body is executed first and then the loop condition is examined.

Syntax:

do

statement;

while (expression);

· First statement is executed and then expression is evaluated. If the outcome of the latter is nonzero then the whole process is repeated. Otherwise, the loop is terminated.

· The do loop is less frequently used than the while loop. It is useful for situations where we need the loop body to be executed at least once, regardless of the loop condition.

//the DO while logic for summing numbers from 1 through n
void main()

{
int sum = 0,i=1,n;
cout<<"Enter the maximum number"<<endl;

cin>>n;

 do

sum += i++;

 cout<<"the sum of numbers from 1 to <<n<<"is =:"<<sum;

 }

The control of the do…while loop statement is shown below:

 false

true
E.g.1
//the following program displays “Hello’’ until one presses ‘N’
#include<iostream.h>

#include<conio.h>

void main ()

{

 char ch;

 do

 {

 cout<<"Hello!\n";

 cout<<"Do you want to display more Hello's (Y/N) ";

 cin >>ch;

 } while (ch != 'N');

getch();

}
E.g. 2
 /* this prog asks the user to type a number from 1 to 10 (inclusive) and refuses to accept any number outside that range. */

#include <iostream.h>

 void main ()

 {

 int my_number;

 int valid; // 1 if the number is valid,

 // 0 otherwise

 cout << "Please enter a number from 1 to 10 : ";

 do

 { cin >> my_number;

 valid = 1; // by default

 if (my_number < 1)

 valid = 0;

 if (my_number > 10)

 valid = 0;

 if (valid == 0)

 cout << "I said from 1 to 10! Try again : ";

 }

 while (valid == 0);

 cout << "Thank you." << endl;
}

4.4 Nested loop statements
We can stick/nest one loop statement inside another one. In such cases, the resulting loop statement is called a nested loop statement. In principle, you can have as many loops nested inside each other as you like.

//this prog demonstrates the nesting of loop statements

#include <iostream.h>

void main ()

 { int x, answer;

 for (x = 1; x <= 10; x++)

 { cout << "Question " << x << endl;

 cout << "What is the answer to " << 2*x

 << " + " << (30 - x) << " ? : ";

 do

 { cin >> answer;

 if (answer == 2*x + 30 - x)

 cout << "Correct!" << endl;

 else

cout << "No, try again!" << endl;

 }

 while (answer != 2*x + 30 - x);

 }

 }
4. 5 Jump statements
4.5.1 Break statement

This statement causes an exist from a loop or decision block. It takes the control from the inner block to the outer (out of the following closing brace). In switch statement it is used to exit from the switch statement. A break statement only applies to the loop or switch immediately enclosing it. It is an error to use the break statement outside a loop or a switch.

E.g.
/* this prog converts characters from small case to upper case if they are written in small cases. The loop body will be prematurely terminated by the break statement if ‘N’ is pressed,

*/

 #include<iostream.h>

 #include<conio.h>

 #include<ctype.h>

 void main()

 {

 char ch;

 for(int i=1; i<=26;i++)
{
 cout<<"Enter a character ";

 cin>>ch;

 char up=toupper(ch);
 // converts character from

 cout<<"upper case "<<up;
 // lower case to upper one
 cout<<"\nContinue [Y/N] ";

 cin>>ch;

 if (ch = = 'N')

 break;

// exit out of loop.

}

cout<<"Thanks";

getch();

}
4.5.2 The continue statement
The continue statement terminates the current iteration of a loop and instead jumps to the next iteration. It applies, just like the break statement, to the loop immediately enclosing the continue statement. In while and do loops, the next iteration commences from the loop condition. In a for loop, the next iteration commences from the loop’s third expression.

E.g. //the following program displays even natural numbers below 100

#include<iostream.h>

#include<iomanip.h>

#include<conio.h>

void main ()

 {

for (int i=1; i<=100; i++)

{

 if (i%2!= 0)

continue;

else

 cout<<setw(4)<<i<<endl;

 }

 getch(); }
4.5.3 The goto statement
The goto statement provides the lowest-level of jumping. It has the general form:

goto label;
where label is an identifier which marks the jump destination of goto. The label should be followed by a colon and appear before a statement within the same function as the goto statement itself. But most programmers these days avoid using it altogether in favor of clear programming.

for (i = 0; i < attempts; ++i) {

cout << "Please enter your password: ";

cin >> password;

if (Verify(password))
// check password for correctness

goto out;

 // drop out of the loop

cout << "Incorrect!\n";

}

out:

//etc...
4.5.4 The return statement
The return statement enables a function to return a value to its caller. It has the general form:

return expression;
where expression denotes the value returned by the function. The type of this value should match the return type of the function. For a function whose return type is void, expression should be empty:

return;

Note:

· The only function we have discussed so far is main, whose return type is always int. The return value of main is what the program returns to the operating system when it completes its execution.

· For a function whose return type is void, expression should be empty:

int main (void)

{ cout << "Hello World\n";

 return 0;

}
Exercises

1. Write a program which inputs a person’s height (in centimetres) and weight (in kilograms) and outputs one of the messages: underweight, normal, or overweight, using the criteria:

Underweight:
weight < height/2.5

Normal:

height/2.5 <= weight <= height/2.3

Overweight:
height/2.3 < weight

2. Write a program which inputs a date in the format dd/mm/yy and outputs it in the format month dd, year.

 For example, 25/12/61 becomes: December 25, 1961

3. Write a program which produces a simple multiplication table of the following format for integers in the range 1 to 9:

1 x 1 = 1

1 x 2 = 2

...

9 x 9 = 81

4. Write a program which inputs an integer value, checks that it is positive, and outputs its factorial, using the formulas:

factorial(0) = 1

factorial(n) = n × factorial(n-1)
.
5. Write a program that display numbers from 0 to 10 using three loops.

6. write for loop that will produce each of the following sequence

· 2, 4, 6, ….44

· 5, 7, 9,…...45

· The sum of numbers between 2 to 44 inclusive

· The sum of the first 20 numbers in the series 1, 4, 7, 10…

7. Re write the following code fragment using one switch statement
if (ch = = ‘E’|| ch= = ‘e’)

 cout<<" this is either the value of ‘E’ or ‘e’";

else if (ch = = ‘A’|| ch= = ‘a’)
 cout<<" this is either the value of ‘A’ or ‘a’";

else if (ch = = ‘r’|| ch= = ‘i’)
 cout<<" this is either the value of ‘i’ or ‘r’";
 else

 cout<<" Enter the correct choice";

8. If the originally x=2 ,y=1 and z=1, what are the value of x, y, z after executing the following code?

Switch(x)

{

case 0 : x = 2;

 y =3;

case 1 : x =4;

Default:

y = 3;

x = 1;

}

9. If the variable divisor is not zero, divide the variable dividend by divisor, and store the result in quotient. If divisor is zero, assign it to the quotient. Then print all the variables. Assume the dividend and divisor are integer and quotient is a double.

10. write a program that create the following number patern.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

11. Write a program that accepts student mark out of 100, and return the corresponding letter grade based on the following condition:

if mark is greater than or equal to 90
A
if mark is greater than or equal to 80
and less than 90 B
if mark is greater than or equal to60
and less than 80 C
if mark is greater than or equal to 40
and less than 60 D
if mark is less than 40 F
for other cases NG

N.B write the program using both switch and else-if.

Test exprsn

 ?

 exit

Loop body

 exit

Loop body

Condition

 ?

PAGE
11

